Electric Truck Battery Pack Status Report

I’ve been driving my electric pickup truck since February of 2011, and have almost 2.5 years on my first lead acid battery pack (twenty six-volt GC-8 golf cart batteries by Energizer/Johnson Controls/Costco). I’ve put just under 2000 miles a year on the truck (4449 miles since I got it, 16011 miles total as an electric truck) but have charged the batteries around six hundred times. My average trip is relatively short (7.43 miles) and I’m averaging around 800 watt/hours per mile driven (measured from the wall, including charger and battery inefficiencies.)

When I first got the truck I could drive 20 miles with ease, and if I pushed things and drove carefully I could get up to a 30 mile trip out of the battery pack without pushing it below 80% discharged. Over the last 2.5 years / 600 cycles the pack has degraded, and one battery basically failed. I replaced the failed battery (it had about 1/2 the capacity of the rest of the pack and was limiting my maximum range to 5-7 miles per charge) with a replacement for $100 and now the pack is performing at a reasonable rate for a 2.5 year old set of batteries.

My current max range is around 15+ miles (I’ve driven several 13-14 mile trips carefully without getting any low battery alerts), which is enough to make it to the hardware store and back with a long piece of lumber. My typical commute is a 4 mile round trip to the MARTA station, so it can very easily make this trip. I expect that in the next year I won’t be able to make it to the hardware stores, but will probably still be able to use it to get to the MARTA station for a one or two more years.

I plan on replacing the entire pack in one or two years, depending upon how things shake out. It appears that my battery costs per mile will be in the 0.30 – 0.40 range, which is under the federal mileage rate, but does not count the cost of electricity (around 0.09 a mile) or maintenance. I have actually been very happy with the cost of maintenance on the truck. I replaced the two front shocks myself, had a shop service the brakes when I purchased it, and replaced a few pieces of interior trim and a parking break lever with parts I got at a junk yard, but all told the maintenance costs have been under $300 for the last few years. Compared to the maintenance needed on our internal combustion engine (ICE) vehicle this is a pittance…I could have bought two new battery packs for the truck with all the money we have spent on the family car in the shop over the last two years.

Building a temporary toroid

I decided that I couldn’t wait for the official oneTesla stamped metal toroid to arrive, so I built one myself out of stuff I bought at the hardware store.

a toroid made of flexible alunimum hose and silver tape

3" by 8' flexible alunimum ducting, and silver plumbers alunimum duct tape
(Specifically 3″ flexible aluminum ducting, and aluminum Duct/Plumbers tape. I couldn’t find any 2″ flexible ducting…more about this later) I ran out of tape, so I couldn’t make it quite as nice as I would have liked, but a lack of tape isn’t my only problems from an aesthetic standpoint. I’m really looking forward to having the professionally stamped toroid, as it should maintain the great aesthetics of the kit.

It actually looked a lot nicer back when I only had one round of tape holding the two ends together. I also had some extra “Great Stuff” expanding foam that I had just used to plug some holes in the house, so I filled the inside of my toroid with some foam to give it a bit of extra rigidity before I taped it closed.

flexible alunimum ducting wraped around a circular wood form atop a oneTesla coil.

I used a piece of thin plywood to hold the toroid, and wrapped it in aluminum tape (until I ran out).
coil halfway taped
I used the last of my tape to completely cover the top and bottom of the wood circle and bridge to the toroid. I also taped the breakout point coming off of my toroid.
top of wooden form covered in tape, with a breakout point mounted.

Now, for the big annoyance. Because I couldn’t find any 2″ tubing, I substituted 3″ tubing instead. The toroid has a major dimension of close to 11 inches and the diameter is 3″. The oneTesla recommended toroid has an 8″ major dimension and a 2″ minor dimension. I don’t know how much this will affect the Tesla coil, but I’m hoping that as long as I run it at 1/4 or 1/3 of the max power things won’t break.

Update:
Unfortunately, this toroid was measured about 70kHz out of tune (233kHz for the primary, vs 303khz for the toroid that I made). I only turned the power up to 40% and the primary oscillated, (you can hear the buzzing) but I never got a spark. I have a smaller 2″ diameter inner tube and more aluminum tape on order now…

oneTesla build

Who has a 99% complete tesla coil? Yes, that’s right, due to my extensive blogroll of the technorati (i.e. MIT students) I found out about the oneTesla kickstarter before it got super popular and got in on the ground floor (first 100 backers). Over the next month they got more and more interest, and I kept watching the features of the kit I had pledged/ordered go up. [Better interrupter, stamped toroid, etc…] Of course, like most kickstarters, it took them about three times longer than they had anticipated to actually ship the rewards, but I got my kit and (after a few customer service emails) put it all together!

oneTesla tesla coil kit completed

The only thing missing is the stamped toroid for the top, so I can’t quite spit out long sparks to the tune of the imperial march, but since I was expecting to have to make my own toroid out of an inner-tube and aluminum tape when I made the pledge, I can’t complain about a few delays in such a custom component.

So until the toroid’s ship, you (and I) will just have to watch other people’s oneTeslas making music:

Top speed 275 mm / sec

Although my print head can move at 300 mm/sec, my extruder can not reliably keep the plastic flowing at that speed. (Perhaps if I turned up my extruder temperature above 195 C…)

I have decided that 275 mm / sec is a reliable top speed for my extruder after printing a relatively large part at that speed with the temperature turned up to 200 C.

This video shows layers being printed in about 15 seconds with 3 exterior perimeters and 25% infill.

Here is another video of the twisted koch snowflake vase (scaled up to 150%) being printed at 275 mm/sec top speed. Due to the fractal nature of the sides of the vase the platform rarely got up to the top speed, as it never had a long enough path to accelerate up to full speed.

Printing at 300mm/sec

I decided that I needed to switch to a different (larger) 3D object so that my printer could accelerate up to full speed on some long straightaways. Here is what 300 mm/sec printing looks like on a larger square object:

However, my extruder just couldn’t keep the plastic flowing (at least, not at 185 C), and it jammed. So I have decided to try 275 mm/sec with the temp set to 200 C (lading to an actual extruder temp that is closer to 195 C).

Stepping up the speed on my Rostock-Mini

Now that my Rostock-Mini is basically finished, I have been adjusting the parameters of Slic3r to increase the print speed. Why? Because this is my sports car 3D printer….It’s small, looks cool, and is fast! In contrast, my Prussa Mendel is the family mini-van: Nothing to look at, reliable, with a large print volume.

finished_frontview

Because the Rostock-Mini has the cold end of my extruder mounted on top of the frame (not on the motion platform) it doesn’t have to move the weight of the extruder stepper, gears and associated hardware. The filament is pushed down to the platform via a bowden tube (think bicycle brake cable) and the only part that needs to accelerate and decelerate is the hot-end and associated fan / air duct. The lighter the platform is, the faster it can move and change direction while maintaining positional accuracy.

The Twisted Kochflake vase that I’ve been using for my test print has 7 layers at the bottom with “infill” but above that, it’s just made up of four perimeters of plastic traced around the volume of the interior of the vase. This means that some layers require a relatively short amount of motion/time, especially near the lower part of the vase. I have my Slic3r software set up to not allow any layer to take less than 15 seconds to give the plastic a bit of time to solidify before we put the next layer on top of it, so in some parts of the videos below the platform is not moving at it’s true top speed because of this software limitation. Also, due to acceleration constraints, the platform can’t get up to full speed on small bumpy surfaces. When the printer is printing the bottom seven layers (you’ll see it going back and forth to fill in the circle with plastic) or the wider part of the fractal pattern as the vase grows up you’ll see where layers take longer than 15 seconds (4 times around the vase is a single layer) and the platform will be moving at top speed.

Here is my printer set to 225 mm/sec, which is faster than most printers that have a moving single extruder will be able to do:

Here is the twisted Koch Vase at 150 mm/sec, which is approaching the top speed of most gantry style homebrew 3D printers that move the cold end of the extruder.

This is a relatively slow 75 mm/second video:

Rostock Mini Z-Axis accuracy

When calibrating the bed of a standard 3D printer, you can slide a piece of paper under the extruder and adjust the bed until it’s touching the extruder (but still able to be pulled out) in several places to level the bed about right. However, with a delta bot, your X/Y/Z coordinate system must be converted mathematically into the coordinate system of the three carriages ridding the towers, and determining if your calibration parameters are correct is not as easy. If your calibration parameters are incorrect, your entire coordinate space may be warped!

I was able to eyeball things to get my calibration parameters set up “good enough” for standard use, but it still wasn’t perfect. I finally broke down and shelled out $15 for a cheap Chinese made machinist’s dial indicator so that I could get my coordinate space transforms square and flat down to a thousandths of an inch. (I changed one calibration parameter by 0.5 mm…so it wasn’t terribly far off from the “eyeball” approach, but I feel better about it now…)

Here is a video of the machinist’s dial indicator in action:

The nine small vertical “bumps” in the beginning of the video is from me pushing the 0.1mm down button on the control interface multiple times until I got the indicator close to the top of the dial. As you can see from the dial it takes nine 0.1mm bumps to travel around 3.5 hundredths of an inch. Google says that 0.9mm = 0.0354331 inches, so my units appear to line up right.

I also jumped the head up and down 10mm at a time to show that the head comes back to the same Z height.

When I scrape the probe back and forth in the Y axis the indicator jiggles around due to friction, but you can see that the measurements don’t move more than 0.01″ when the probe moved across the entire glass build plate (and it’s very close to 0.001″ accuracy when stopped at the end and middle points). Overall I’m very happy with the positional accuracy and calibration of the motion platform now. Although I only measured the Z axis with my dial indicator, because it’s a delta-bot the z-axis is a joint effort of all three towers, so I figure that my positioning accuracy in the Z coordinate axis is a good proxy for the X and Y coordinate axis as well.

Greg’s Wade Bowden Extruder for Rostock-Mini

The original direct drive Airtripper V3 extruder that I had made for my Rostock-Mini was almost able to get the job done. However, my stepper just didn’t quite have enough torque to push the filament directly, and it would “skip” steps relatively continuously. I could still print large objects, but they would have a “foamy” appearance due to using less plastic than they really should. Also, my stepper motor and drivers were getting hot due to all the extra current flowing through them.

I finally decided it just wasn’t going to work well enough for production use, and printed an extruder (Gregs Accessible Wade extruder) that has a printed gear system for a large mechanical advantage. I adapted it to feed into my Bowden tube and mount onto the top of my Rostock-mini frame with two printed parts.
IMG_1250

It made all the difference in the world. My geared extruder can now easily feed filament continuously through the hot end at a 300mm/min rate.

I also printed an adapter plate that holds the stepper motor and attached extruder in the appropriate location/angle. In the future I may integrate this with parts from Gregs Wade extruder design to build an integrated extruder.
IMG_1247

How to make a 264 gallon rain “barrel” out of a liquid tote tank

100L-tank

I was recently given a 264 gallon liquid tote tank. That’s 1000 liters for you non-americans. These tanks are typically used to transport and store liquid products such as corn syrup or dish soap for small to medium sized industrial processes (large industrial processes get tanker cars full of liquid….). The tank itself is made of HDPE (high density polyethylene), which is the same plastic that milk jugs are made of, recycling number “2” (but it’s quite a bit thicker!) and it is protected by a galvanized steel cage with forklift points on the bottom.

Unfortunately, mine come with a semi-proprietary valve and nozzle. To make it into a (large!) rain barrel, I wanted to attach a standard 3/4″ hose bib. Continue reading