Megatree Ball Topper

For Christmas 2017, I built a computer controlled RGB Pixel LED megatree around a pine tree in my yard. For Christmas 2018, I built a 48″ outside diameter “ball” topper for the tree. (It looks better when it’s pulled 20′ up the tree, and lit up at night…)

This was the first “large scale” project that made use of my Maslow CNC router to cut out a large number of parts (which took many hours) that bolt together in such a way that each individual part can fit into a 27 gallon tote for storage.

I think it actually took longer to cut out all of the parts than to paint them, but painting them with exterior house paint for some weather protection also took a bit of effort.

If you want my OpenSCAD files to make your own version, you can find it in this zip file:
topperOpenscad

And here is a video that shows off some of the animations I sequenced for 2018:

ILLuminArt 2018 Tornado

This is “Florida Weather” (a.k.a. The Tornado) an entry to the 2018 ILLuminArt show by Florida Sculpture Guild members Amy Wieck, Louise Buhrmann and Cathy Farrar. My only contribution was the computer controlled lights to add “Lightning” which can be seen in the video below:

They won both 2nd place and the People’s Choice Award.

8×8 floating dock section

 

I bought a 8×16 floating dock for $100 delivered. The main reason it was so cheap was that they had originally used Melamine covered particle board for the decking, with predictable results.

But the pressure treated 2×6’s and foam floats were in relatively good shape, so I bought 4 brand new 2×6’s to have nice new lumber on the outside, and built my own 8×8 floating dock.

I used 7 2×6’s total (4 new ones and the 3 interior ones salvaged from the original dock) to build the frame around the foam floats, wheeled it down to the lake, and then screwed in 19 composite deck boards.

And here is the finished product (before adding hardware to fix it in place with pipe floats, bumpers, solar lights, etc…)

 

The total cost was about a dollar per pound of dock. The composite deck boards were the heaviest and most expensive single item, although the hardware to hold the dock on pipes and attach it to other dock sections will also add significantly to the cost.

Item Price Weight
Old Dock parts w/ Delivery 50 100
4 (new) + 3 (used) 2×6 -ground contact PT 23.52 117
3x tubes of black calk 14.34 2
deck screws 3.5″ 8.05 1
19 composite Deck Boards 252.7 307
2 lb deck screws (1 5/8″) 16.08 2
2x TommyDocks floating dock pipe guide (with pipe & augers, not included in the weight) 111.9 4
4x Solar Pathway Lights 57.95 1
Totals (Cost / Weight) $534.32 534lb

Pokeball Decoration (MDF, Paint, Resin)

I built this for my son. It was also a learning project for my new Maslow CNC Router (and using tinted casting resin to fill in pockets for a mixed-media project).

Videos of the process:
1 – How to design the digital file

2 – How to convert the SVG file into Gcode using the Makercam.com webapp

3 – Running the Maslow CNC Router and cutting out the part.

4 – Hand finishing, spray-paint and colored resin pouring to finish the piece.

 

You can download a zip file including the SVG and gcode (.nc) files here: pokeball_files

Maslow CNC “hanging router” review

I have completed a few projects using my Maslow CNC “hanging router”. Although I’m not yet an expert on its use, I feel like I have enough experience for a general review. The bottom line is that it provides excellent value for the cost for a hobbyist, but will not replace a professional gantry style CNC router for professional use.

 

The source of the Maslow’s sub $500 cost is its unique motion system, which relies on gravity working against two variable length chains to position the router sled, which must slide on a flat work piece. Because you provide your own router, build the frame yourself, and cut out the final round sled using a temporary sled that you cut by hand, the electro-mechanical parts of the Maslow can ship in a large USPS priority mail box.

My Maslow is the 2nd generation that includes a ring for two chain carriages to roll along. The rolling chain carriages allow the two support chains to virtually “end” at the center of the sled where the router bit is positioned. This mostly eliminates negative effects of sled rotation and simplifies the kinematics of the machine. Earlier versions tried to model and account for the sled rotation with chains anchored off-center, or used a mechanical linkage system to achieve a similar effect. In my opinion, the ring and carriages is the best solution.

Continue reading

Maslow CNC setup

After building the frame for my Maslow CNC machine, the rest of the setup was just a matter of assembling all of the pieces.   I used 1/4-20 “superstrut” nuts and 1/4-20 machine screws to mount the motor brackets. The slots in the brackets are almost, but not quite wide enough to let 1/4-20 screws go through them, so I had to drill them just slightly larger in the two spots I mounted the screws.

     

I made use of one of the four motor mounting holes to place an extra long (60mm) M4 screw holding a plastic idler that keeps the chain wrapped around the sprocket to avoid chain slips under tension.   I’m currently using a binder clip to keep the plastic idler from “crawling up” the screw and eventually letting the chain fall onto the screw.

I considered buying a shorter screw to keep the plastic idler from crawling up the screw, but if I ever want to manually adjust the chain position on the sprocket all I need to do is remove the binder clip and slip the plastic idler up out of the way, so I’m leaving it as-is for now.   I also paid Lowes an outrageous $5 for a set of two blue plastic end caps to make the end of my superstrut look nice.

 

 

You can see that I also hung the far end of the chain from the idler mounting screw, and adjustable tension is placed on the slack side of the chain with an idler sprocket weighted down with a few pounds of water. (So far I just put a few inches of water in each jug, and haven’t needed to add significant weight.)

I found that I could balance a small level directly on top of the chain and use the bubble to get a tooth of the sprocket aligned vertically within a 10th of a degree. (At least, there was a small but visible difference between the bubble between presses of the 0.1 deg button in the software…you’ll probably have to click the photos to zoom in before you can see it…)

 

I built a temporary sled out of a piece of plywood that was left over from covering a window during Hurricane Irma. Instead of bothering to countersink the heads of the provided brick mounting bolts, I just used deck screws to mount the temporary bricks.   I also was able to use the (too short) screws originally meant for the clear router base to mount the router to the plywood by abusing the heck out of a large countersink bit to REALLY countersink the screws so the short length was no longer an issue.

After calibrating the machine using the foam waste board, I used the temporary sled to cut a fancy round sled out of some MDF I had laying around. I don’t like the super fine sawdust that MDF generates, but it is more slick than regular plywood, which I figure is a good property for a router sled to have. (Plus, already had it laying around….)

 

 


 

 

Long Board & Sheet Storage + Maslow CNC Frame

I built this rolling triangle shaped frame as a multi-purpose piece of shop furniture. It’s primary function will be as the frame for my maslow CNC router, which is why the front face is at a 15 degree angle and it has the 10′ unistrut beam at the top to mount the chain drive motors on.

But, if I’m going to have a frame to hold a 4’x8′ sheet in my garage, I wanted the back of the frame to serve a useful purpose, so I integrated sheet and board storage into the rolling frame. I can store multiple 4’x8′ sheets inside, along with many long boards in the top. It also stores various pieces of flat plastic and glass I’m saving for important future uses.   Continue reading

Modular Raised Planting Bed

I built a raised planting bed using deck rail planters.   This allows each planter to be moved to different locations within the bed, or to be removed from the bed entirely, allowing the bed to be   (relatively) easily moved.

I used pressure treated 2×4’s to make a simple ladder like frame, held up by four legs resting on 4×4 PT ground contact rated timbers. After painting the pressure treated 2x4s with exterior paint, I expect it to last a good long time.

In my effort to reduce daily chores, I’ve installed a drip irrigation system on a timer. Once the plants get established I hope that the drip irrigation system will soak enough of the containers so that I can stop misting the surface.

Cedar Closet System

I built a closet system for our new closet.

Here is my first video, which shows how I installed the top shelf.

Here is the second video, which shows how to install the shelf cleats and hanging rods.

Here is the final video where I show off some extra work I did that probably wasn’t entirely necessary.

New charging inlet & Drive Away Protection

 

So, this happened. A year and a half of meaning to get around to installing the drive away protection circuit later, I eventually drove away while the J1772 charger was plugged in, which yanked my inlet out of the truck, breaking the plastic air dam in the process. (Luckily, my EVSE wasn’t damaged.)   $150 later, I had a new J1772 inlet and air dam, and had to re-do all of my mounting work. I took this opportunity to re-work how the license plate mounted. Instead of tipping up (which shielded the inlet from view and made it hard to plug in without kneeling) I decided to make it slide to the side so that it would be easier to see and plug into the inlet. I used a 12″ stainless steel drawer slide (with self/soft closing features to keep it closed) for the motion.

Mounting the 15 amp RV inlet, button, and rotary switch was a simple matter of drilling the appropriately sized holes, but the J1772 inlet needed a custom mounting block that would match the interior contour of the air dam so that it could be recessed behind the license plate.

I assembled a stack of laser cut plywood into a block with the correct bolt pattern and cutout for the J1772 inlet, and then I sanded it down to match the interior contour of the air dam. I painted it black and mounted it to the inside of the air dam, and then screwed the inlet to the back of the block.

I also hooked up my drive away protection circuit. Here is a video of the finished system in operation.